MAC-CPTM Situations Project

Situation 41: Square Roots

Prepared at Penn State
Mid-Atlantic Center for Mathematics Teaching and Learning 14 July 2005 - Tracy, Jana, Christa, Jim
Edited at University of Georgia
Center for Proficiency in Teaching Mathematics 25 August 2006 -- Sarah Donaldson, Jim Wilson
31 August 2006 -- Sarah Donaldson
25 September 2006 -- Sarah Donaldson
19 February 2007 -- Pat Wilson

Prompt

A teacher asked her students to sketch the graph of $f(x)=\sqrt{-x}$. A student responded, "That's impossible! You can't take the square root of a negative number!"

Commentary

The student's comment communicates a common misunderstanding that "- x" always represents a negative number, rather than signifying "opposite of x." The following mathematical foci address several key concepts that occur frequently in school mathematics and may be sources of confusion: opposites, negative numbers, domains and ranges of functions. These ideas are addressed algebraically, graphically and numerically. Focus 1 highlights the difference between "opposite" and "negative." Focus 2 examines the domain of $f(x)=\sqrt{-x}$ and how implicit assumptions about the domain and range can influence the function is interpreted. Focus 3 , the graph of $f(x)=\sqrt{-x}$ is examined by considering it as a transformation of $g(x)=\sqrt{x}$. It is here that the range of the function can be clearly seen.

Mathematical Foci

Mathematical Focus 1

In Algebra, $-x$ is a notation that represents the opposite of x. Since the opposite of 6 or $-6<0$, there is a tendency to over generalize and assume that the opposite of x or $-x<0$.

Mathematical terms have precise meanings. The confusion of the terms of "negative" and "opposite" is a potential source of confusion in this problem. A negative number is a kind of number, while the opposite of a number describes the relationship of one number to another. The symbol "-" is commonly read as both negative and opposite. Negative $6(-6)$ indicates a number <0, and the
number opposite of $+6(-6)$ indicates the additive inverse of +6 . When we use x to represent a number, we do not indicate the kind of number (e.g. positive, negative, zero) and -x represents the opposite or additive inverse of x . Words are critical, both for mathematical accuracy and to avoid misconceptions.

Mathematical Focus 2

The domain of the function $f(x)=\sqrt{-x}$ is critical in determining where the function is defined and in determining a particular value of the function if it exists.

Often in school curricula, it is assumed that the domain and range of a function are restricted to real numbers. This implicit assumption contributes to the statement "You can't take the square root of a negative number." If the range and domain of $f(x)=\sqrt{-x}$ are restricted such that $f(x), x \in R$, the function is defined only for $x \leq 0$. If the range and domain of $f(x)=\sqrt{x+2}$ are restricted such that $f(x), x \in R$, the function is defined only for $x \leq-2$. If the domain includes all real numbers and the range is not restricted, the function is defined within the set of complex numbers.

A numerical approach highlights the importance of the restrictions on x in determining where $f(x)=\sqrt{-x}$ is defined

x	$\sqrt{-x}$
-4	$\sqrt{-(-4)}=2$
-3	$\sqrt{-(-3)}=\sqrt{3}$
-2	$\sqrt{-(-2)}=\sqrt{2}$
-1	$\sqrt{-(-1)}=1$
0	$\sqrt{-0}=0$
1	$\sqrt{-1}=i$
2	$\sqrt{-2}=i \sqrt{2}$
3	$\sqrt{-3}=i \sqrt{3}$
4	$\sqrt{-4}=2 i$

The results show that $f(x)=\sqrt{-x}$ exists. If $x \leq 0$, the radicand ≥ 0 and $f(x)$ is defined over the real numbers. If $x>0$, the radicand <0 and $f(x)$ is an imaginary number.

Mathematical Focus 3

Using a transformation of the graph of the known function $g(x)=\sqrt{x}$, the less
familiar function, $f(x)=\sqrt{-x}$, can be generated.
We will restrict this discussion to functions defined within the real numbers.
Specifically, the graph of the function $f(x)=\sqrt{-x}$ is a reflection of the graph of $g(x)=\sqrt{x}$ about the vertical axis, as is shown in the following figure.

The graph illustrates that $f(x)=\sqrt{-x}$ does exist, and that its domain is $\mathrm{x} \leq 0$. The range of $f(x)$ is the same as that of $g(x)$. That is, $f(x) \geq 0$.

